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Variable property similarity transform: Application to axisymmetric fluid flow
against a heated disk

David W. Weyburne
Air Force Research Laboratory, 80 Scott Drive, Hanscom Air Force Base, Massachusetts 01731

~Received 27 February 1998!

A variable property stream function is combined with a similarity variable transform to create a new class of
variable property similarity transforms. The exact fluid flow solutions that are obtained with the new similarity
transforms will be identical to the normally formulated similarity solutions. The utility of the new transforms
will be for developing approximate analytical solutions. This is because the reformulation splits the normal
transform into a slowly varying temperature functional and the rapidly temperature varying mass density. By
assuming the functional is temperature invariant, approximate analytical solutions can be obtained by combin-
ing this approximate functional with a mass density profile approximation. The new approximate velocity
solutions show the spatial variation behavior one would expect for a system with a temperature gradient
present, in contrast to existing approximate methods that are based on average-property approximations. The
new approximate analytical solutions, therefore, provide valuable insights into the expected thermal behavior
and dependencies of the fluid system that cannot be obtained with exact numerical solutions or existing
approximate methods. In addition, the approximate analytical solutions provide a straightforward path to the
development of approximate thermal flow stability criteria. To demonstrate the utility of the new transform, the
present study applies the new variable property similarity transform to the case of axisymmetric fluid flow
against a heated disk.@S1063-651X~98!12112-8#

PACS number~s!: 03.40.Gc, 47.20.Bp
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I. INTRODUCTION

There are relatively few nontrivial exact solutions of t
Navier-Stokes equations describing fluid flow. The tw
dimensional and three-dimensional nature of most fluid s
tems makes even numerical solutions difficult to obta
Similarity variable solutions are among the only known cla
of exact solutions to the equations of fluid motion. Wh
simplifying assumptions that are appropriate to actual fl
behavior are combined with the similarity variable tran
form, the set of partial differential governing equations c
be reduced to a set of ordinary differential equations. T
numerical solutions to the transformed set of ordinary diff
ential equations are, in general, so straightforward that
results are considered exact.

Most similarity variable transforms in the literature we
initially developed as isothermal, fixed-property fluid d
scriptions. To include temperature effects, an energy bala
equation, an energy equation of state, and appropriate bo
ary conditions are combined with the variable property m
and momentum balance equations. Applying the simila
transform to this combined set of equations results in a se
ordinary differential equations. The exact solutions to this
of governing equations are obtained one set at a time. Th
fore it is not possible to makea priori predictions of the flow
behavior for different flow conditions. Approximate solu
tions methods can make predictions to some degree u
average-property approximations. However, because
average-property approximation is employed, the appro
mate velocity profiles obtained with this method do not sh
temperature-induced variations in the spatial directio
Without temperature-dependent spatial variations, it is
possible, for example, to predict the onset of therma
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driven recirculations in the flow.
In the present study we describe a method for reformu

ing existing similarity transforms by incorporating the strea
function into the transform. The exact solutions obtained
solving the set of differential equations using the new sim
larity transform are the same as for the normally formula
similarity transforms. The advantage of the new transform
that the velocity solutions are obtained in terms of the~mass!
density profile and a set of transformed functions that
only weakly temperature dependent. By assuming the tra
formed functions are temperature independent, approxim
analytical solutions can be constructed. Including the stre
function, and thereby the mass continuity equation, into
transform means that a four-parameter analytical approxi
tion is possible for these functions. The approximate tra
formed functions are then combined with an approxim
density profile in order to obtain velocity approximation
that exhibit temperature variations in the spatial directio
This temperature-dependent spatial variation is the main
ference between the approximate solutions obtained he
and other approximate solutions that have appeared in
past. We demonstrate the new transform by applying
method to the one-dimensional model for flow agains
heated disk.

No exact analytical solutions have been reported for
case of flow against a heated disk. For the limiting case o
system with the Reynolds number approaching infinity
zero, one can obtain simple polynomial approximations
the case where the rotation rate is zero, often referred t
stagnation point flow~see discussion and references in Ho
man, Graves, and Jensen@1#!. Recently, Dandy and Yun@2#
applied the Ka´rmán-Pohlhausen approximate solutio
method to this zero rotation case. For the rotating disk ca
Hitchman and Curtis@3# discuss some simple linear analyt
7402
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PRE 58 7403VARIABLE PROPERTY SIMILARITY TRANSFORM: . . .
cal approximations useful in calculating surface concen
tion and temperature gradients. These approximations ap
to be applicable for a very limited set of flow conditions. T
rotating heated disk case is significant because this flow
ometry is widely used in the chemical vapor deposition
dustry and in our laboratory@4#. Therefore this particular
flow situation was chosen to demonstrate the utility of
new variable property similarity transform.

To obtain approximate analytical velocity profiles usi
the reformulated similarity transform technique discuss
herein, the density profile must be known at least appro
mately. In general, this is not a problem since, for most
the similarity transforms that have appeared in the literatu
the temperature profiles are already known at least appr
mately. However, for the case of gas flow against a hea
rotating disk, it was necessary to develop an approxim
expression for the density profile. A linear analytical expr
sion in terms of the thermal boundary layer thickness w
developed. Combining the analytical temperature pro
with the reduced velocity approximations, we found that
resulting fluid description compares favorably to exact fl
solutions for hydrogen, helium, and nitrogen gases flow
against a heated rotating disk.

In what follows, we begin with a review of the exa
one-dimensional similarity transform for axisymmetric flu
flow against a heated disk. We then derive the new varia
property similarity transform. To obtain the approxima
analytical solutions for a heated rotating disk, we introduc
linear density profile approximation that is proportional
the boundary layer thickness. A general analytical expres
for the boundary layer thickness is obtained from fits to
periment. The density profile approximation is then co
bined with a four-parameter spatial model to obtain veloc
approximations. Finally, we discuss the results and point
how they can be used to generate flow stability criteria.

II. EXACT ONE-DIMENSIONAL FLUID FLOW MODEL

Steady-state fluid flow against a heated disk can be m
eled theoretically by a combination of the Navier-Stok
equation, the energy balance equation, and the contin
equation. For an axisymmetric system, the continuity eq
tion in cylindrical coordinates is

1

r

]

]r
$rrVr%1

]

]z
$rVz%50, ~1!

wherer is the density,Vr is the radial velocity, andVz is
axial velocity. Neglecting compressibility effects, the va
able property axial component of the Navier-Stokes equa
is given by

rVr

]Vz

]r
1rVz

]Vz

]z

5
]P

]z
2rg1

1

r

]

r Fmr S ]Vz

]r
1
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]z D G
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]

]z F2m
]Vz
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]
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whereP is the pressure,g is gravity acceleration, andm is the
viscosity. Similar expressions are obtained for the radial a
circumferential components. To describe the fluid state fu
we must also include the energy balance. Neglecting visc
dissipation and absorption of radiation by the fluid, and
suming the heat capacity per unit masscp is constant, then
the energy balance equation is given by

rVr

]T

]r
1rVz

]T

]z
5

1

cp

]

]r S rk
]T

]r D1
1

cp

]

]z S k
]T

]zD ,

~3!

wherek is the thermal conductivity of the fluid andT is the
temperature.

Given a set of boundary conditions and an equation
state relatingP, r, andT, the above equations can be solv
to obtain the fluid properties at any point in the syste
However, the solutions at one point are obtained only a
solving the governing equations over a grid of points sp
ning the boundaries. For a moderately complicated geo
etry, this grid can typically involve hundreds to thousands
points. Thus solving the set of partial differential equatio
becomes laborious and time consuming. One alternative
reduce the set of three-dimensional~3D! partial differential
equations to a set of 1D ordinary differential equations us
a similarity variable transform. The one-time numerical s
lution to the set of ordinary differential equations is sufficie
to define fluid properties at every point in the system.

von Kármán developed such a similarity transform to d
scribe axisymmetric rotating disk flow@5#. Assuming that
Vz , r, T, andm are functions only of the axial coordinatez
and that the radial velocity, the circumferential velocity~if
applicable!, and the radial pressure gradient are linearly d
pendent on the radial coordinate, then the von Ka´rmán simi-
larity transform can be employed:

h5zAK/n0,
~4!

Vr5rK f 8~h!, Vu5rVg~h!, Vz522AKn0f ~h!,

where the prime denotes derivative with respect toh, K and
V are constants,f (h) andg(h) are dimensionless functions
andn0 is the kinematic viscosity. The von Ka´rmán similarity
transform can be applied to a number of flow situations
making various choices forK andV and the boundary con
ditions ~see, for example, references in Ref.@6# and Evans
and Greif@7#!. As originally developed by von Ka´rmán @5#,
the similarity transform for an infinite rotating disk is give
by Eq. ~4! with K5V5v, wherev is the angular velocity
of the disk.

III. VARIABLE PROPERTY SIMILARITY TRANSFORM

Recently, Evans and Greif@7# introduced a similarity
variable for the geometry depicted in Fig. 1. IfVz

0 is the
magnitude of the axial velocity of fluid exiting the injecto
andL is the distance between the injector and the disk, th
the new similarity variable is given byK5V5(v1Vz

0/L).
In this geometry, the gas is ejected in a direction norma
the injector and onto the heated disk. For convenience,
locate thez50 plane at the injector and the disk surface
the z52L plane. Fluid properties denoted with subscript
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7404 PRE 58DAVID W. WEYBURNE
superscript ‘‘0’’ thus refer to the initial fluid conditions. Th
injector and the disk are parallel and infinite in extent.
order to obtain variable property solutions, Evans and G
@7# combined the variable property governing equations w
a variable property similarity transform given by

h5~z1L !AK/n0,
~5!

Vr5rKF ~h,T!, Vu5rVG~h,T!, Vz5AKn0H~h,T!,

where F(h,T), G(h,T), and H(h,T) are dimensionless
functions andn kinematic viscosity. By imposing the appro
priate boundary conditions, the new transform can cove
large flow regime including stagnation point flow and infin
rotating disk flow.

Obtaining variable property numerical solutions to the
of governing equations@Eqs.~1!–~3!# is straightforward us-
ing the Evans and Greif similarity transform. In Fig. 2 th
dimensionless axial velocity functionH(h,T) is plotted as a
function of disk temperature for one set of flow condition
While the exact solutions utilizing the similarity transfor
are simple and straightforward, there are a number of ap
cations for which a reasonably accurate analytical appr
mation would be desirable. To develop approximate anal
cal expressions for the fluid situation described by Eq.~5!, it
would be necessary to develop approximations for the
mensionless functionsF(h,T), G(h,T), and H(h,T).
There are two velocity boundary conditions each forVu , Vz ,
and Vr and two temperature boundary conditions. Thus
spatial variation approximation would be limited to a dif
cult two-parameter approximation. However, by reformul
ing the similarity equations using a stream function a
proach, the functionsF(h,T) andH(h,T) can be combined
into a new dimensionless function~see below!. This new
function can be readily approximated spatially with a fou
parameter model. The problem is that there are no guidel
or boundary conditions as to how any of these dimension
functions behaves with temperature.

One way of obtaining the temperature behavior of
dimensionless functionH(h,T), for example, would be to
separateH(h,T) into a weakly temperature-dependent fun
tion and a strongly temperature-dependent function. To
complish this, we introduce a type of variable property sim
larity transform in which the reduced density appe
explicitly in the transform. Assuming the spatial variation
the density can be estimated and that the new dimension

FIG. 1. Geometry and coordinate system. The fluid injecto
located on thez50 plane and the disk is located on thez52L
plane. The gravity vector is parallel to thez axis.
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function is relatively insensitive to temperature, the ne
transform allows us to introduce analytical approximatio
for Vr(z,T) and Vz(z,T) that exhibit temperature-gradien
induced variations in thez direction.

Our variable property similarity transform development
analogous to the fixed property case. We assume thatVz , r,
and m are functions only of the axial coordinatez and that
the radial velocity, the circumferential velocity~if appli-
cable!, and the radial pressure gradient are linearly dep
dent on the radial coordinate. If the variable property stre
function C is given in terms of a dimensionless functio
h(z,T) by

C5r0AKn0r 2h~z,T!, ~6!

then the continuity equation is automatically satisfied if

r~z,T!Vr~r ,z,T!52
1

r

dC

dz
,

~7!

r~z,T!Vz~z,T!5
1

r

dC

dr
.

The functionh(z,T) that satisfies the above equations can
used to define a variable property similarity transform giv
by

h5~z1L !S K

n0
D 1/2

,

Vr5rK
h8~h,T!

r̄~h,T!
, Vu5rVG~h,T!, ~8!

Vz522AKn0

h~h,T!

r̄~h,T!
,

wherer̄(h,T)5r(h,T)/r0 .

FIG. 2. Dimensionless axial velocityH(h,T) at different disk
temperatures. The simulated flow conditions are for hydrogen
with L51.3 cm, P5152 torr, Vz

0510.6 cm/sec, v552
radians/sec, disk temperatureTd5400– 1400 K, and injector tem
peratureT05400 K. The injector is located ath/hd50 and the
disk is located ath/hd51.
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PRE 58 7405VARIABLE PROPERTY SIMILARITY TRANSFORM: . . .
The solutions of the set of differential equations descr
ing the flow obtained by employing Eq.~8! will, of course,
be identical to the solutions employing Eq.~5!. Comparing
the fixed and the variable property similarity transform giv
by Eqs.~4! and~8!, we see that the functionh(h,T)/ r̄(h,T)
reduces tof (h) for the isothermal case. To illustrate th
nature of the new transform, the new axial velocity functi
h(h,T) is plotted in Fig. 3 for the same flow conditions us
in Fig. 2. Comparing Figs. 2 and 3, it is evident that t
temperature behavior ofh(h,T) is relatively weak compared
to H(h,T). It is not unreasonable, therefore, to approxim
h(h,T) by a function that is independent of temperatu
This approximation should hold at least for a limited set
Td , T0 , Vz

0, v, andL values. Thus, if an approximation fo
the density profile were available, then it would be possi
to obtain approximate velocity profiles for different dis
temperatures.

IV. VELOCITY AND TEMPERATURE
PROFILE APPROXIMATIONS

A. Temperature profile approximation

In order to develop analytical approximations for the flo
velocities given in Eq.~8!, an expression for the densit
profile r(z,T) is needed. To approximate the density profi
we assume the fluid behaves as an ideal gas. Thus an
proximate analytical expression for the temperature pro
T(z) will suffice. To develop an approximation, we first e
amined a series of exact temperature profile plots obta
by solving the governing equations using the variable pr
erty similarity transform@Eq. ~8!#. In Fig. 4 we plot one
sample set for hydrogen gas flow at different injector-to-d
gapsL. In this particular case, the rotation rate at eachL is
adjusted to mimic infinite rotating disk solutions, i.e., t
condition ]P/]r 50 was imposed. The temperature profil
in Fig. 4 for smallL are well approximated by a linear lin
while the profiles for largeL are essentially identical. At an
intermediate point the flow changes from smallL to largeL
behavior. The transition point roughly corresponds to

FIG. 3. Dimensionless axial velocityh(h,T) for the variable
property similarity transform at different disk temperatures. T
simulated flow conditions and geometry are the same as thos
Fig. 2. The solid line is the analytical approximationc(h) given by
Eq. ~17!.
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thermal boundary layer thicknessdT , which, for this set of
conditions, is about 5 cm. Assuming a linear model, the te
perature profile is reasonably well approximated by

T~z!5H T02DTz/L for L,dT

Td2DT~L1z!/dT for L>dT and z<~dT2L !

T0 for L>dT and z.~dT2L !,
~9!

whereDT5Td2T0 . We now have a reasonable approxim
tion of the temperature profile, and therefore the density p
file, with only one unknown, the boundary layer thicknes

B. Thermal boundary layer thickness

Thermal and momentum boundary layer thicknesses
terms usually applied to flow in which bulk flow propertie
persist up to a thin layer adjacent to a physical boundary.
the flow situation described by Evans and Greif’s similar
variable, this condition is only fulfilled for a small subset
Td , T0 , Vz

0, v, andL which mimic an infinite rotating disk.
The isothermal expression for the momentum boundary la
thicknessdm of an infinite rotating disk@8# is given by

dm}An0 /v. ~10!

From a simple heat transfer argument, Schlichting@8# has
shown that the momentum and thermal boundary layer th
nesses are approximately related by the expressiondm
;dTPr1/2, where Pr is the Prandlt number. Therefore t
thermal boundary layer thickness is given by

dT}An0 /vPr. ~11!

Examination of Eq.~11! indicates that the thermal bound
ary layer thickness does not depend on the disk tempera
To verify that this is indeed the case for the heated disk,
generated a large set of similarity solutions by varying
independent variables. To ensure that the solutions had
boundary layer behavior, only those solutions for zero rad

in

FIG. 4. Dimensionless temperature (5$T(z)2T0%/$Td2T0%)
as a function of the injector-to-disk spacing. The simulated fl
conditions are for hydrogen gas withP5152 torr, Vz

0

510.6 cm/sec, disk temperatureTd51000 K, and injector tempera
tureT05400 K. The heated disk is located atz50 and the injector
is located atz5L.
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7406 PRE 58DAVID W. WEYBURNE
pressure gradient, i.e.,]P/]r 50, were considered. After ex
amining many data sets in which we would vary one varia
and keep all but one of the other variables constant,
found that the similarity variable quantitiesVz

0, L, andv are
the key parameters that determine the flow behavior. In
5 we plot the quantitiesVz

0/L versus the rotation ratev for a
number of gases and conditions. The vertical dashed lin
the plot is generated using the approximate analytical exp
sion forVz

0 of an infinite rotating disk given by Breiland an
Evans@9#. We obtained the dashed linear line in the plots
a best manual fit to a whole series of plots using differ
gases and conditions@10#. This equation is given by

Vz
0

vL
>

1

6 S T0

Td
D 1/2

. ~12!

This relationship establishes the conditions for wh
]P/]r 50 in the temperature range of our analysis, 400
<Td<1400 K. So far we have only tested it for helium
nitrogen, and hydrogen gases, but we believe it will work
most gases with similar Prandlt numbers.

Examination of the plot reveals that the boundary thic
nessdm may be taken as the intersection of the straight l
given by Eq.~12! and the infinite rotating disk expressio
generated from the Breiland and Evans@9# expression. Thus

dT>6
n0

Vz
0APr

FH2~`!S Td

T0
D 1/2G , ~13!

whereH(`) is Breiland and Evans’s analytical approxim
tion. The quantity in square brackets represents the effec

FIG. 5. Exact solutions to the governing equations for the c
where ]P/]r 50. The circles are for hydrogen gas withL
50.5– 45 cm, P5760 torr, Vz

052.12 cm/sec, Td51400 K, and
T05400 K. The triangles are for nitrogen gas withL
50.5– 10 cm, P5152 torr, Vz

055 cm/sec, Td5750 K, and T0

5400 K. The squares are for helium gas withL50.5– 15 cm,P
5620 torr,Vz

055.47 cm/sec,Td5700 K, andT05300 K. The ver-
tical dashed lines are generated using the infinite rotating disk
pression given by Breiland and Evans@9#. The dashed linear line
was obtained as a best manual fit to a series of similar plots.
e
e
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temperature on the traditional boundary layer express
@Eq. ~11!#. For hydrogen gas, the quantity in parenthes
varies from 0.75 at 400 K to 1.1 at 1400 K. The bounda
layer thickness is indeed only weakly dependent on the t
perature.

C. Approximate analytical velocity expression

With the boundary layer thickness given by Eq.~13!, we
now have an approximate density profile for the rotating d
case. We now determine a temperature-independent app
mation for the functionh(h,T). From examination of Fig. 2,
we assume a trial solution of the form

h~h,T!'c~h![a11a2h1a3h21a4h3. ~14!

The boundary conditions for this transformed system ah
50 are

h~h,T!uh505
Vz

0

2AKn0

, h8~h,T!uh5050 ~15!

and at the disk,h5hd ,

h~h,T!uh5hd
50, h8~h,T!uh5hd

50. ~16!

Applying the same boundary conditions toc(h), we find

c~h!5
Vz

0

2AKn0
S 123

h2

hd
2 12

h3

hd
3D . ~17!

This analytical expression is compared to the exact calc
tion of h(h,T) in Fig. 3. An approximate analytical solutio
is obtained by combining Eq.~17! and the approximate den
sity profile. Thus

FIG. 6. Comparison between the approximate analytical so
tions and the exact solutions to the governing equations for the a
velocity profile. The rotation rate in each case is adjusted so
]P/]r 50. For the twoL51.3 cm lines, the simulated flow cond
tions are the same as those used in Fig. 2 withTd51000 K. The
other two lines are the exact and the approximate solutions for
same conditions but withL515 cm.
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x-
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Vr~r ,z,T!>5
2r

3Vz
0

r̄~z,T! H z

L2 1
z2

L3J for L,dm

2r
3Vz

0

r̄~z,T! H z2dm1L

dm
2 1

~z2dm1L !2

dm
3 J for L>dm and z<~dm2L !

0 for L>dm and z.~dm2L !,
~18!

Vz~z,T!>5
Vz

0

r̄~z,T! H 3z2

L2 1
2z3

L3 21J for L,dm

Vz
0

r̄~z,T! H 3~z2dm1L !2

dm
2 1

2~z2dm1L !3

dm
3 21J for L>dm and z<~dm2L !

2Vz
0 for L>dm and z.~dm2L !,
e
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wherer̄(z,T) is given by Eqs.~9! and~13!. For L,dm , the
two approximate velocity equations are similar to the cre
flow solutions for forced flow against a disk described
Chapman and Bauer@11#, the principal difference being th
temperature-dependent reduced density termr̄(z,T).

In Fig. 6 we compare the approximate analytical expr
sion for the axial velocity profile and the exact calculati
for two different sets of flow conditions. The analytical e
pressions developed above appear to be good approxima
to the exact solutions in the temperature range 600 K,Td

,1400 K and withVz
0, L, andv related by Eq.~12!.

The approximations used in Eqs.~9! and~18! were chosen
primarily for their simplicity. One shortcoming particular t
the approximations being used above is that the analy
expressions do not compare as well to exact results in
vicinity of L;dT . To see this, we plot the exact radial v
locity profiles for three differentL’s and the new analytica
expression@Eq. ~18!# in Fig. 7. The behavior is consisten
with the fact that the linear temperature approximation i
poor approximation in the vicinity ofL;dT ~see Fig. 4!. A

FIG. 7. Approximate analytical solutions and exact solutions
the governing equations for the reduced radial velocity profi
given byVr /(r * Vz

0/L) with ]P/]r 50. The simulated flow condi-
tions are for hydrogen gas withP5152 torr, Vz

0510.6 cm/sec,Td

51000 K, andT05400 K. Under these conditions, the bounda
layer thickness is approximatelydm55.3 cm.
p
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ns
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better approximation would improve the situation. For e
ample,T01DT* @12(L1z)/dT#2 turns out to be a reason
able approximation forL>dT . Thus it is possible to obtain
better approximations than Eqs.~9! and~18! for certain flow
situations. However, in general, we have found these
approximations are reasonable for a fairly wide set of fl
conditions.

V. DISCUSSION

The above example for flow against a heated rotating d
demonstrates how one can combine a variable prop
stream function with a similarity variable transform to crea
a new variable property similarity transform. This reform
lation technique should be applicable to other existing si
larity transforms for which the stream function approach
appropriate. Using the stream function, and thereby the m
continuity equation, the functional and/or its spatial deriv
tive can be related to at least two flow velocities. This,
turn, means that four boundary conditions can be applied
the determination of the functional and/or its spatial deriv
tive. This is adequate to obtain a reasonable spatial appr
mation for the functional by a suitable analytical equation.
order to obtain variable property velocity approximatio
with this approach, it is necessary to also approximate
density profile. Since this is a reformulation of an existi
transform, the temperature profiles have already been
ported in most cases. Depending on the assumed relation
for P, r, T, the density profile can be deduced from t
temperature profile shape. With the functional and the d
sity profile approximation, it is then possible to obtain an
lytical velocity profiles that closely approximate the corre
temperature behavior.

The temperature-dependent behavior in the axial direc
is the primary difference between the method presen
herein and previous approximate methods~e.g., Ref.@12#!
for solving the flow governing equations. The importance
the temperature-dependent axial variations can be see
inspection of the exact solutions in Fig. 2. An average pr
erty analytical approximation, for example, would not
able to predict the velocity increase near the injector (h/hd
;0) caused by gas heating from the disk. The new appro
mate method, on the other hand, will show the spatial va
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tion behavior one would expect for a system with a tempe
ture gradient present~e.g., Fig. 6!.

A. Flow stability criteria

Including the temperature effects in the analytical veloc
approximations opens up a new path for examining ther
flow stability. Both the approximate analytical solutions a
the exact solutions obtained using similarity transfor
simulate a real fluid accurately only as long as the assu
tions used to obtain the similarity transform remain val
Convection-induced recirculation is an example of a flu
flow in which the similarity transform assumptions will n
longer be valid. Thus, from both a fundamental and a pr
tical standpoint, one would like a simple set of rules th
determines the range of validity of the similarity transform
model a real, finite system. Historically, hydrodynamic s
bility has been studied theoretically using the linear analy
approach developed by Rayleigh. In this approach the eff
of small disturbances to the steady-state governing equa
are studied. The system is said to be stable if the dis
bances decay to zero and unstable otherwise. Various
proximate stability rules have been developed from the
mensionless variables appearing in the disturba
equations. The Rayleigh number, for example, has b
shown experimentally to predict the onset of fluid convect
in a cold-ceiling, hot-floor closed container. However, th
method cannot be applied to every flow situation, includ
the case for axisymmetric stagnation point flow@13#.

The approximate analytical equations developed ab
provide a new approach to stability analysis which we n
sketch. The first step in this approach is to substitute
approximate analytical velocity profiles@Eq. ~18!# and the
temperature profile@Eqs.~9! and~13!# into the axial~gravity
direction! momentum equation@Eq. ~2!#. The result is a
temperature-dependent analytical function for each term
the momentum equation. Any number of thermal stabi
criteria expressions can be developed from combination
the various terms. By examining exact solution plots of
different terms in Eq.~2! for the heated rotating disk, w
have determined that the primary contributions to the to
axial momentum come from the gravity termrg and the
viscosity term,m]2Vz /]z2. The two approximate terms wer
then integrated from the top of the thermal boundary laye
the middle of the boundary layer. For theL.dT flow regime,
the ratio of the resulting terms is

FSP;
8g~DT/T0!@Td /~Td13T0!#

vAn0v~Tave/T0!n11
. ~19!

Thermal stability will presumably be assured as long asFSP
is smaller than some number that we are currently attemp
to determine by comparing to experimental results. For
purpose, we are performing finite element calculations t
mimic the flow situation depicted in Fig. 1.

TheFSPparameter is similar to theMCP parameter used
by Breiland and Evans@9# to study flow stability in a rotating
heated disk system. For this flow regime, the stability p
dictions are expected to be essentially similar. For theL
,dT flow regime, the ratio of the two approximate term
yields a different expression withL2 dependence. The ex
-
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perimental verification of these various stability criteria e
pressions is too preliminary at this point to report. Howev
the results thus far are encouraging. We plan to present
complete theoretical derivations and results will be el
where@14#.

B. Heated rotating disk applications

The above analysis of the flow against a heated disk
practical applications. Vertical flow, rotating disk system
are widely used in industry for chemical vapor depositi
~CVD! because the model predicts uniform deposition.
CVD reactor operated so that]P/]r;0 is one case in which
the experimental flows can be made to closely approxim
the theoretical flow. In this flow situation, the radial veloci
is essentially zero right up to the boundary layer. This flo
situation is advantageous since there will be minimal si
wall effects. Inside the boundary layer, radial velocities c
become quite large. However, since the boundary la
thickness for most CVD reactor conditions is only a fe
centimeters at most, the only concern would be sidewall
teractions over these few centimeters. From the anal
given above, a few dimensionless parameters can be us
determine when the reactor is being operated in this regi
For the forced flow against a heated rotating disk flow mo
~Fig. 1!, we define a new dimensionless lengthb,

b[
L

dT
>

LVz
0APr

6n0H2~`!ATd /T0

, ~20!

where Eq.~13! is used for the boundary layer thickness val
dT . Furthermore, we define the Reynolds number as

Re[H Vz~0,T!

vL
for b,1

Vz
2~0,T!

6vn0
for b.1.

~21!

Defined in this way, the Reynolds number will be consiste
in the vicinity of b;1. For b.1, the flow behaves like
infinite rotating disk flow if Re;1

6 @see Eq.~13!# and forced
flow against a disk if Re@1

6. The fact that infinite rotating
disk flow occurs at low Reynolds numbers explains why
velocity approximations@Eq. ~18!# obtained above are simi
lar to the creep flow solutions~i.e., Re;0! described by
Chapman and Bauer@11#. For b,1, the flow behaves like
forced flow in a channel for Re>1

6. For Re,1
6, there will be

areas of radial inflow in the vicinity of the injector regardle
of the value ofb @4,7#.

VI. CONCLUSION

We have presented a method for reformulating exist
similarity transforms into new variable property similari
transforms. The new transforms are useful for develop
approximate analytical solutions, and from these, the de
opment of approximate flow stability parameters. To dem
strate the new transform and its usefulness, we applied
reformulation technique to axisymmetric fluid flow agains
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heated rotating disk. Using a newly developed therm
boundary layer expression applicable to flow agains
heated rotating disk, we obtained approximate analytical
pressions for the velocity and temperature profiles that c
So
l
a
x-
-

pare well with exact calculations. The reformulation tec
nique for similarity transforms should be widely applicab
to other similarity transforms that have appeared in the
erature.
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