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A variable property stream function is combined with a similarity variable transform to create a new class of
variable property similarity transforms. The exact fluid flow solutions that are obtained with the new similarity
transforms will be identical to the normally formulated similarity solutions. The utility of the new transforms
will be for developing approximate analytical solutions. This is because the reformulation splits the normal
transform into a slowly varying temperature functional and the rapidly temperature varying mass density. By
assuming the functional is temperature invariant, approximate analytical solutions can be obtained by combin-
ing this approximate functional with a mass density profile approximation. The new approximate velocity
solutions show the spatial variation behavior one would expect for a system with a temperature gradient
present, in contrast to existing approximate methods that are based on average-property approximations. The
new approximate analytical solutions, therefore, provide valuable insights into the expected thermal behavior
and dependencies of the fluid system that cannot be obtained with exact numerical solutions or existing
approximate methods. In addition, the approximate analytical solutions provide a straightforward path to the
development of approximate thermal flow stability criteria. To demonstrate the utility of the new transform, the
present study applies the new variable property similarity transform to the case of axisymmetric fluid flow
against a heated disk51063-651%98)12112-§

PACS numbds): 03.40.Gc, 47.20.Bp

I. INTRODUCTION driven recirculations in the flow.

In the present study we describe a method for reformulat-
There are relatively few nontrivial exact solutions of the ing existing similarity transforms by incorporating the stream
Navier-Stokes equations describing fluid flow. The two-function into the transform. The exact solutions obtained by
dimensional and three-dimensional nature of most fluid syssolving the set of differential equations using the new simi-
tems makes even numerical solutions difficult to obtain.larity transform are the same as for the normally formulated
Similarity variable solutions are among the only known classSimilarity transforms. The advantage of the new transform is

of exact solutions to the equations of fluid motion. Whenthat the velocity solutions are obtained in terms of (in@s3

simplifying assumptions that are appropriate to actual ﬂuiodelnSity pﬁ)file and a set of transformed functions :\hat are
behavior are combined with the similarity variable trans-ON!Y Weakly temperature dependent. By assuming the trans-
formed functions are temperature independent, approximate

form, the set of partial differential governing equations can ; : .
P 9 geq analytical solutions can be constructed. Including the stream

be reduced to a set of ordinary differential equations. Thefunction, and thereby the mass continuity equation, into the

numerical solutions to the transformed set of ordinary d'ffer'transform means that a four-parameter analytical approxima-

ential equations.are, in general, so straightforward that thﬁon is possible for these functions. The approximate trans-
results are 9°”_S'dere_d exact. , ) formed functions are then combined with an approximate
_ _I_\/Iost similarity varlable transform_s in the Ilterature_ were density profile in order to obtain velocity approximations
initially developed as isothermal, fixed-property fluid de-hat exhibit temperature variations in the spatial directions.
scriptions. To include temperature effects, an energy balancenis temperature-dependent spatial variation is the main dif-
equation, an energy equation of state, and appropriate bounfkrence between the approximate solutions obtained herein
ary conditions are combined with the variable property mas@nd other approximate solutions that have appeared in the
and momentum balance equations. Applying the similaritypast. We demonstrate the new transform by applying the
transform to this combined set of equations results in a set ahethod to the one-dimensional model for flow against a
ordinary differential equations. The exact solutions to this seheated disk.

of governing equations are obtained one set at a time. There- No exact analytical solutions have been reported for the
fore it is not possible to maka priori predictions of the flow case of flow against a heated disk. For the limiting case of a
behavior for different flow conditions. Approximate solu- system with the Reynolds number approaching infinity or
tions methods can make predictions to some degree usirgero, one can obtain simple polynomial approximations for
average-property approximations. However, because athe case where the rotation rate is zero, often referred to as
average-property approximation is employed, the approxistagnation point flowsee discussion and references in Hout-
mate velocity profiles obtained with this method do not showman, Graves, and Jensgl]). Recently, Dandy and Yuf2]
temperature-induced variations in the spatial directionsapplied the Kaman-Pohlhausen approximate solution
Without temperature-dependent spatial variations, it is notethod to this zero rotation case. For the rotating disk case,
possible, for example, to predict the onset of thermallyHitchman and Curti$3] discuss some simple linear analyti-
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cal approximations useful in calculating surface concentrawhereP is the pressurey is gravity acceleration, and is the

tion and temperature gradients. These approximations appewiscosity. Similar expressions are obtained for the radial and
to be applicable for a very limited set of flow conditions. The circumferential components. To describe the fluid state fully,
rotating heated disk case is significant because this flow geve must also include the energy balance. Neglecting viscous
ometry is widely used in the chemical vapor deposition in-dissipation and absorption of radiation by the fluid, and as-
dustry and in our laboratorj4]. Therefore this particular suming the heat capacity per unit massis constant, then
flow situation was chosen to demonstrate the utility of thethe energy balance equation is given by

new variable property similarity transform.

To obtain approximate analytical velocity profiles using i, v T _ 19 . M, Lo 9T
the reformulated similarity transform technique discussed PV r TPz Cp ar ar Cp 92 az)’
herein, the density profile must be known at least approxi- 3

mately. In general, this is not a problem since, for most of . o . )
the similarity transforms that have appeared in the literature/Vherek is the thermal conductivity of the fluid anlis the
the temperature profiles are already known at least approxfemperature. o _
mately. However, for the case of gas flow against a heated V€N @ set of boundary conditions and an equation of
rotating disk, it was necessary to develop an approximat€t@te relating®, p, andT, the above equations can be solved
expression for the density profile. A linear analytical expres{C obtain the fluid properties at any point in the system.
sion in terms of the thermal boundary layer thickness wad!oWever, the solutions at one point are obtained only after
developed. Combining the analytical temperature profile>0!Ving the governing equations over a grid of points span-
with the reduced velocity approximations, we found that the?iNd the boundaries. For a moderately complicated geom-
resulting fluid description compares favorably to exact flow®lY: this grid can typically involve hundreds to thousands of
solutions for hydrogen, helium, and nitrogen gases flowingP@INts: Thus splvmg the.set of part|a}l differential equations
against a heated rotating disk. ecomes laborious and time consuming. One alternative is to
In what follows, we begin with a review of the exact reduce the set of three-dlm_ensmm_aD) partial differential
one-dimensional similarity transform for axisymmetric fluid €quations to a set of 1D ordinary differential equations using
flow against a heated disk. We then derive the new variabl@ Similarity variable transform. The one-time numerical so-
property similarity transform. To obtain the approximate'Ut'on to the set of ordinary differential equations is sufficient
analytical solutions for a heated rotating disk, we introduce 40 define fluid properties at every point in the system.
linear density profile approximation that is proportional to Von Kaman developed such a similarity transform to de-
the boundary layer thickness. A general analytical expressiopCliP€ axisymmetric rotating disk flofs]. Assuming that
for the boundary layer thickness is obtained from fits to ex-Vz: £, T, and are functions only of the axial coordinate
periment. The density profile approximation is then com-2nd that the radial velocity, the circumferential velocitfy
bined with a four-parameter spatial model to obtain velocity2PPlicablé, and the radial pressure gradient are linearly de-
approximations. Finally, we discuss the results and point oup€ndent on the radial coordinate, then the vomrka simi-
how they can be used to generate flow stability criteria. @ity transform can be employed:

n=2VyKl/ v,

4
Steady-state fluid flow against a heated disk can be mod- Ve=tKE (), Vo=rQg(n),  Vy==2VKwof (),

eled theoretically by a combination of the Navier-Stokesyhere the prime denotes derivative with respecitd and
equation, the energy balance equation, and the continuity) are constants,(7) andg( ) are dimensionless functions,
equation. For an axisymmetric system, the continuity equagndy, is the kinematic viscosity. The von Kaan similarity
tion in cylindrical coordinates is transform can be applied to a number of flow situations by
making various choices fd and() and the boundary con-
19 d ditions (see, for example, references in RE§] and Evans
T op WPVt {pVg=0, (D and Greif[7]). As originally developed by von Kenan [5],
the similarity transform for an infinite rotating disk is given

wherep is the densityV, is the radial velocity, and/, is g¥tﬁg'éngIth K=0=w, wherew is the angular velocity

axial velocity. Neglecting compressibility effects, the vari-
able property axial component of the Navier-Stokes equation

II. EXACT ONE-DIMENSIONAL FLUID FLOW MODEL

Ill. VARIABLE PROPERTY SIMILARITY TRANSFORM

is given by
Recently, Evans and Greijf7] introduced a similarity
av, Vv, variable for the geometry depicted in Fig. 1.\?!2 is the
pV: WJFPVZ 9z magnitude of the axial velocity of fluid exiting the injector,
andL is the distance between the injector and the disk, then
JP 19 N, dV, the new similarity variable is given big=Q=(w+VY/L).
=z P9t T I T T In this geometry, the gas is ejected in a direction normal to
the injector and onto the heated disk. For convenience, we
L9y, N 2 (li v ‘9_\/2” (zy locate thez=0 plane at the injector and the disk surface at
oz | M oz T3 M\ Y ar ' az ||’ thez=—L plane. Fluid properties denoted with subscript or
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FIG. 1. Geometry and coordinate system. The fluid injector is
located on thez=0 plane and the disk is located on the —L
plane. The gravity vector is parallel to teaxis.

superscript “0” thus refer to the initial fluid conditions. The
injector and the disk are parallel and infinite in extent. In  FIG. 2. Dimensionless axial velocityl (7, T) at different disk
order to obtain variable property solutions, Evans and Greifemperatures. The simulated flow conditions are for hydrogen gas
[7] combined the variable property governing equations withwith L=1.3cm, P=152torr, V2=10.6cm/sec, »=52

a variable property similarity transform given by radians/sec, disk temperatufg=400-1400 K, and injector tem-
peratureT,=400 K. The injector is located a/7y=0 and the
n=(z+L)VK/v,, disk is located atp/ nq=1.
(5
V,=rKF(%,T), V,=rQG(7T), V,={VKygH(7,T), function is relatively insensitive to temperature, the new

transform allows us to introduce analytical approximations

where F(7,T), G(#,T), and H(#,T) are dimensionless for V,(z,T) andV,(zT) that exhibit temperature-gradient-
functions andv kinematic viscosity. By imposing the appro- induced variations in the direction.
priate boundary conditions, the new transform can cover a Qur variable property similarity transform development is
large flow regime including stagnation point flow and infinite analogous to the fixed property case. We assume\thap,
rotating disk flow. and u are functions only of the axial coordinateand that

Obtaining variable property numerical solutions to the sethe radial velocity, the circumferential velocitgif appli-
of governing equationfEgs. (1)—(3)] is straightforward us-  cable, and the radial pressure gradient are linearly depen-
ing the Evans and Greif similarity transform. In Fig. 2 the dent on the radial coordinate. If the variable property stream

dimensionless axial velocity functidf(#,T) is plotted as a  function ¥ is given in terms of a dimensionless function
function of disk temperature for one set of flow conditions.h(z, T) by

While the exact solutions utilizing the similarity transform

are simple and straightforward, there are a number of appli- ¥ =poVKvor?h(z,T), (6)
cations for which a reasonably accurate analytical approxi-

mation would be desirable. To develop approximate analytithen the continuity equation is automatically satisfied if
cal expressions for the fluid situation described by &4, it

would be necessary to develop approximations for the di- 1dv

mensionless functions=(%,T), G(#%,T), and H(#,T). p(Z Vi (r.zT) ==+ 4=

There are two velocity boundary conditions each\gr, V,, 7)
and V, and two temperature boundary conditions. Thus a

spatial variation approximation would be limited to a diffi- P(Z V(2 T)= T 5

cult two-parameter approximation. However, by reformulat-

ing the similarity equations using a stream function ap-the functionh(z, T) that satisfies the above equations can be
proach, the functions(#,T) andH(#7,T) can be combined  seq to define a variable property similarity transform given
into a new dimensionless functiofsee below. This new by
function can be readily approximated spatially with a four-
parameter model. The problem is that there are no guidelines K\ 12
or boundary conditions as to how any of these dimensionless n=(z+L) V-) ,
functions behaves with temperature. 0

One way of obtaining the temperature behavior of the h' (.T)
dimensionless functiomd(7,T), for example, would be to V=K — 22 v,=rQG(n,T), ®)
separateH (7, T) into a weakly temperature-dependent func- p(7,T)
tion and a strongly temperature-dependent function. To ac-
complish this, we introduce a type of variable property simi- V,= — 2K h(»,T)
larity transform in which the reduced density appears z °p(n,T)’
explicitly in the transform. Assuming the spatial variation of
the density can be estimated and that the new dimensionlesgherep(7,T)=p(7,T)/pg.
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FIG. 3. Dimensionless axial velocitiy(#,T) for the variable FIG. 4. Dimensionless temperature={T(z) — To}/{Ty4—To})

property similarity transform at different disk temperatures. Theas a function of the injector-to-disk spacing. The simulated flow
simulated flow conditions and geometry are the same as those gonditions are for hydrogen gas withP=152 torr, V?
Fig. 2. The solid line is the analytical approximatiow) given by ~ =10.6 cm/sec, disk temperatufg=1000 K, and injector tempera-
Eq. (17). ture To=400 K. The heated disk is locatedzt 0 and the injector
is located atz=L.

The solutions of the set of differential equations describ-
ing the flow obtained by employing E¢8) will, of course, thermal boundary layer thickness, which, for this set of
be identical to the solutions employing E@). Comparing ~conditions, is about 5 cm. Assuming a linear model, the tem-
the fixed and the variable property similarity transform givenperature profile is reasonably well approximated by
by Eqgs.(4) and(8), we see that the functiom( 7, T)/p(#,T)
reduces tof(#) for the isothermal case. To illustrate the To—ATZL for L<dy
nature of the new transform, the new axial velocity function T(2)=) Ta—AT(L+2)/8r for L=6y and z<(ér—L)
h(#,T) is plotted in Fig. 3 for the same flow conditions used To for L=67 and z>(d7—L),
in Fig. 2. Comparing Figs. 2 and 3, it is evident that the ©)

temperature behavior @f( ,T) is relatively weak compared whereAT=T4—T,. We now have a reasonable approxima-

tho H(_l_”’-[))' It |fs not unrehaso_naplz, thergfore, &O approximatejo, of the temperature profile, and therefore the density pro-
(7' ) by a function that is independent o Femperature.ﬁle, with only one unknown, the boundary layer thickness.
This approximation should hold at least for a limited set of

Tq, To, V‘Z), o, andL values. Thus, if an approximation for
the density profile were available, then it would be possible
to obtain approximate velocity profiles for different disk ~ Thermal and momentum boundary layer thicknesses are
temperatures. terms usually applied to flow in which bulk flow properties
persist up to a thin layer adjacent to a physical boundary. For
the flow situation described by Evans and Greif's similarity
variable, this condition is only fulfilled for a small subset of
T4, To, VS, w, andL which mimic an infinite rotating disk.

A. Temperature profile approximation The isothermal expression for the momentum boundary layer

In order to develop analytical approximations for the flow thicknesséy, of an infinite rotating disk8] is given by
velocities given in Eq.(8), an expression for the density s ]
profile p(z,T) is needed. To approximate the density profile, m* VVo/@.

we assume the fluid behaveg as an ideal gas. Thus an 3Prom a simple heat transfer argument, Schlichfiey has
proximate analytlcal expression for th_e temperature Profileshown that the momentum and thermal boundary layer thick-
T(2) will suffice. To develop an approximation, we first ex- esses are approximately related by the expressign
amined a series of exact temperature profile plots obtained 5:P2 where Pr is the Prandlt number. Therefore the

by solving the governing equations using the variable Props, | boundary | thick P b
erty similarity transform[Eq. (8)]. In Fig. 4 we plot one ermal boundary fayer thickness 1s given by

sample set fpr hydrogen gas flow at d|ﬁ9rent injector-to-disk P W. (11)
gapsL. In this particular case, the rotation rate at eécis

adjusted to mimic infinite rotating disk solutions, i.e., the Examination of Eq(11) indicates that the thermal bound-
condition 9P/dr=0 was imposed. The temperature profilesary layer thickness does not depend on the disk temperature.
in Fig. 4 for smallL are well approximated by a linear line To verify that this is indeed the case for the heated disk, we
while the profiles for largé. are essentially identical. At an generated a large set of similarity solutions by varying the
intermediate point the flow changes from snialio largeL independent variables. To ensure that the solutions had true
behavior. The transition point roughly corresponds to theboundary layer behavior, only those solutions for zero radial

B. Thermal boundary layer thickness

IV. VELOCITY AND TEMPERATURE
PROFILE APPROXIMATIONS

(10
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FIG. 5. Exact solutions to the governing equations for the case ) ) )
where 9P/ar=0. The circles are for hydrogen gas with FIG. 6. Comparison between the approximate analytical solu-

=0.5-45 cm, P=760 torr, V9=2.12 cm/sec, T4=1400 K, and tions and the exact solutions to the governing equations for the axial
To=400K. The triangles are for nitrogen gas with velocity profile. The rotation rate in each case is adjusted so that
=0.5-10 cm, P=152torr, V9=5 cm/sec, T4=750K, and T dP/dr=0. For the twoL=1.3 cm lines, the simulated flow condi-
=400 K. The squares are for helium gas with-0.5—15 cm,P tions are the same as those used in Fig. 2 Witk 1000 K. The
=620 torr, V9=5.47 cm/secT4= 700 K, andT,=300 K. The ver- other two Iipes are the.exact and the approximate solutions for the
tical dashed lines are generated using the infinite rotating disk ex§@me conditions but with =15 cm.

pression given by Breiland and Evaf®]. The dashed linear line

was obtained as a best manual fit to a series of similar plots. » )
temperature on the traditional boundary layer expression

[Eg. (12)]. For hydrogen gas, the quantity in parentheses
pressure gradient, i.e?P/dr =0, were considered. After ex- varies from 0.75 at 400 K to 1.1 at 1400 K. The boundary
amining many data sets in which we would vary one variabldayer thickness is indeed only weakly dependent on the tem-
and keep all but one of the other variables constant, w&erature.
found that the similarity variable quantiti&@, L, andw are
the key parameters that determine the flow behavior. In Fig. C. Approximate analytical velocity expression

5 we plot the quantitie¥’?/L versus the rotation rate for a With the boundary layer thickness given by Efj3), we
number of gases and conditions. The vertical dashed line ifow have an approximate density profile for the rotating disk
the plot is generated using the approximate analytical expregsase. We now determine a temperature-independent approxi-

sion for V7 of an infinite rotating disk given by Breiland and mation for the functioth(,T). From examination of Fig. 2,

Evans[9]. We obtained the dashed linear line in the plots asye assume a trial solution of the form
a best manual fit to a whole series of plots using different
gases and conditiofd40]. This equation is given by h(7,T)~c(n)=a,+a,p+azn’+a,n°. (14)

The boundary conditions for this transformed systenyat

=0 are

V) 1T\ Y2
43

ol 6Ty

h(an)|7]:0: h,(an)|7]:0:0 (15)

This relationship establishes the conditions for which 2VKvy'

dP/dr=0 in the temperature range of our analysis, 400 K

<T,<1400K. So far we have only tested it for helium, and at the disky= 74,

nitrogen, and hydrogen gases, but we believe it will work for

most gases with similar Prandlt numbers. h(7,T)|,=»,=0, h'(7,T)|,=,,=0. (16)
Examination of the plot reveals that the boundary thick-

nessés,, may be taken as the intersection of the straight lineApplying the same boundary conditions¢¢z), we find

given by Eq.(12) and the infinite rotating disk expression

generated from the Breiland and Evd®s$ expression. Thus Vg A 7°
c(n)= 1—3—2+2—3). (17)
Vo Td 1/2 2K Vo Td Nd
Sr=6——=|H¥(=)| ==| |, (13) . . -
Vz\/ﬁr To This analytical expression is compared to the exact calcula-

tion of h(#,T) in Fig. 3. An approximate analytical solution
whereH () is Breiland and Evans’s analytical approxima- is obtained by combining Eq17) and the approximate den-
tion. The quantity in square brackets represents the effect ity profile. Thus
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VY [z 2 o les
—-r m F+E§ or L<oy,
V,(r,z,T)= 3VY (z2=68ptL (z—6pn+L)2
r ST 52 + 5 for L=6,, and z=(6,—L)
0 for L=6,, and z>(5,—L),
(18
—Vg 3z + 2z 1 for L<§
p(zT) | L2 L% or m
0 2 3
V(z,T)={ Vi (3(z=6y+L)? 2(z—6y+L)
ST 52 + 5 1; for L=6,, and z<(6,—L)

-V? for L=6,, and z>(6,—L),

wherep(z,T) is given by Eqs(9) and(13). ForL<4,,, the  better approximation would improve the situation. For ex-
two approximate velocity equations are similar to the creemmple, To+AT*[1—(L+2)/8¢]? turns out to be a reason-
flow solutions for forced flow against a disk described byable approximation foL= &;. Thus it is possible to obtain
Chapman and Bauégd 1], the principal difference being the better approximations than Eq®) and(18) for certain flow
temperature-dependent reduced density te(mT). situations. However, in general, we have found these two

In Fig. 6 we compare the approximate analytical expresapproximations are reasonable for a fairly wide set of flow
sion for the axial velocity profile and the exact calculation conditions.
for two different sets of flow conditions. The analytical ex-
pressions developed above appear to be good approximations
to the exact solutions in the temperature range 660TK V. DISCUSSION
<1400 K and withV?, L, andw related by Eq(12).

The approximations used in Eq9) and(18) were chosen
primarily for their simplicity. One shortcoming particular to
the approximations being used above is that the analytic
expressions do not compare as well to exact results in th
vicinity of L~ &7. To see this, we plot the exact radial ve-
locity profiles for three different’s and the new analytical
expression Eg. (18)] in Fig. 7. The behavior is consistent
with the fact that the linear temperature approximation is
poor approximation in the vicinity of ~ &7 (see Fig. 4. A

The above example for flow against a heated rotating disk
demonstrates how one can combine a variable property
aﬁtream function with a similarity variable transform to create
a new variable property similarity transform. This reformu-
fation technique should be applicable to other existing simi-
larity transforms for which the stream function approach is
appropriate. Using the stream function, and thereby the mass
continuity equation, the functional and/or its spatial deriva-
ive can be related to at least two flow velocities. This, in
turn, means that four boundary conditions can be applied to
the determination of the functional and/or its spatial deriva-
tive. This is adequate to obtain a reasonable spatial approxi-
mation for the functional by a suitable analytical equation. In
order to obtain variable property velocity approximations
with this approach, it is necessary to also approximate the
density profile. Since this is a reformulation of an existing
- transform, the temperature profiles have already been re-
ported in most cases. Depending on the assumed relationship
L for P, p, T, the density profile can be deduced from the
temperature profile shape. With the functional and the den-
sity profile approximation, it is then possible to obtain ana-
Iytical velocity profiles that closely approximate the correct
temperature behavior.
i The temperature-dependent behavior in the axial direction
0 1 2 is the primary difference between the method presented
Reduced Radial Velocity herein fand previous apprc_:ximate methc(dsg.,Ref.[lZ])
for solving the flow governing equations. The importance of
FIG. 7. Approximate analytical solutions and exact solutions toth€ temperature-dependent axial variations can be seen by
the governing equations for the reduced radial velocity profileinspection of the exact solutions in Fig. 2. An average prop-
given byV, /(r*VY/L) with 9P/dr=0. The simulated flow condi- €rty analytical approximation, for example, would not be
tions are for hydrogen gas with= 152 torr, V2= 10.6 cm/sec T able to predict the velocity increase near the injectat(y
=1000 K, andT,=400 K. Under these conditions, the boundary ~0) caused by gas heating from the disk. The new approxi-
layer thickness is approximately,=5.3 cm. mate method, on the other hand, will show the spatial varia-
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tion behavior one would expect for a system with a temperaperimental verification of these various stability criteria ex-
ture gradient presere.g., Fig. 6. pressions is too preliminary at this point to report. However,
the results thus far are encouraging. We plan to present the
complete theoretical derivations and results will be else-

] ) . _ where[14].
Including the temperature effects in the analytical velocity

approximations opens up a new path for examining thermal
flow stability. Both the approximate analytical solutions and
the exact solutions obtained using similarity transforms The above analysis of the flow against a heated disk has
simulate a real fluid accurately only as long as the assumppractical applications. Vertical flow, rotating disk systems
tions used to obtain the similarity transform remain valid.are widely used in industry for chemical vapor deposition
Convection-induced recirculation is an example of a fluid(CVD) because the model predicts uniform deposition. A
flow in which the similarity transform assumptions will no CVD reactor operated so thaP/dr ~0 is one case in which
longer be valid. Thus, from both a fundamental and a practhe experimental flows can be made to closely approximate
tical standpoint, one would like a simple set of rules thatthe theoretical flow. In this flow situation, the radial velocity
determines the range of validity of the similarity transform tois essentially zero right up to the boundary layer. This flow
model a real, finite system. Historically, hydrodynamic sta-situation is advantageous since there will be minimal side-
bility has been studied theoretically using the linear analysisvall effects. Inside the boundary layer, radial velocities can
approach developed by Rayleigh. In this approach the effecsecome quite large. However, since the boundary layer
of small disturbances to the steady-state governing equationiickness for most CVD reactor conditions is only a few
are studied. The system is said to be stable if the distureentimeters at most, the only concern would be sidewall in-
bances decay to zero and unstable otherwise. Various ageractions over these few centimeters. From the analysis
proximate stability rules have been developed from the digiven above, a few dimensionless parameters can be used to
mensionless variables appearing in the disturbancéetermine when the reactor is being operated in this regime.
equations. The Rayleigh number, for example, has beeRor the forced flow against a heated rotating disk flow model
shown experimentally to predict the onset of fluid convection(Fig. 1), we define a new dimensionless length

in a cold-ceiling, hot-floor closed container. However, this

method cannot be applied to every flow situation, including L ng\/ﬁr 20

the case for axisymmetric stagnation point flfi]. B Br = BrgHA () TLITe, (20

The approximate analytical equations developed above
provide a new approach to stability analysis which we now

sketch. The first step in this approach is to substitute th&vhere Eq(13) is used for the boundary layer thickness value
approximate analytical velocity profild$€q. (18)] and the  Jr. Furthermore, we define the Reynolds number as
temperature profilfEgs.(9) and(13)] into the axial(gravity

A. Flow stability criteria

B. Heated rotating disk applications

direction momentum equatioEq. (2)]. The result is a V,(0,T)

temperature-dependent analytical function for each term in ol for p<1

the momentum equation. Any number of thermal stability Re= ) (22)
criteria expressions can be developed from combinations of VZ(0,T) ¢ 1

the various terms. By examining exact solution plots of the 6wy or p>1.

different terms in Eq.(2) for the heated rotating disk, we
have determined that the primary contributions to the totabefined in this way

a_xial momentum2 come2 from the gravity_ terpg and the 4o vicinity of B~1. For g>1, the flow behaves like
viscosity termu.d°V,/dz". The two approximate terms Were j snite rotating disk flow if Re- [see Eq(13)] and forced
then mtegrated from the top of the thermal boundary layer Giow against a disk if Re-t. The fact that infinite rotating
the m|qldle of the bOUF‘daW Iaye_r. For the- oy flow regime, iy fiow occurs at low Reynolds numbers explains why the
the ratio of the resulting terms is velocity approximation$Eq. (18)] obtained above are simi-
lar to the creep flow solution§i.e., Re~0) described by
_ (199  Chapman and Bauddl]. For <1, the flow behaves like
Voo (Tayel To)" 1 forced flow in a channel for Rei. For Re<i, there will be
areas of radial inflow in the vicinity of the injector regardless
Thermal stability will presumably be assured as longra®  of the value ofg [4,7].
is smaller than some number that we are currently attempting
to determine by comparing to experimental results. For this
purpose, we are performing finite element calculations that
mimic the flow situation depicted in Fig. 1. We have presented a method for reformulating existing
The FSPparameter is similar to thBICP parameter used similarity transforms into new variable property similarity
by Breiland and Evani®] to study flow stability in a rotating transforms. The new transforms are useful for developing
heated disk system. For this flow regime, the stability pre-approximate analytical solutions, and from these, the devel-
dictions are expected to be essentially similar. For the opment of approximate flow stability parameters. To demon-
< 671 flow regime, the ratio of the two approximate terms strate the new transform and its usefulness, we applied the
yields a different expression with? dependence. The ex- reformulation technique to axisymmetric fluid flow against a

the Reynolds number will be consistent

89(AT/T)[T4/(Ty4+3T
FSpo a( [ Ta/(Tq 0]

VI. CONCLUSION
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heated rotating disk. Using a newly developed thermapare well with exact calculations. The reformulation tech-
boundary layer expression applicable to flow against anique for similarity transforms should be widely applicable
heated rotating disk, we obtained approximate analytical exto other similarity transforms that have appeared in the lit-
pressions for the velocity and temperature profiles that comerature
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